福島第一原子力発電所
▼人気記事ランキング
3.建設までの経過
3.9.敷地地盤高の決定
一木忠治が東芝レビューに投稿した記事によれば、整地面レベルを決定する際、通常のプラントでは建屋設備の配置、建設作業に必要な用地を経済的に造成できることが必要としていたが、原子力発電所の場合はそれに加えて、当時から次の点を考慮していたという[51]

原子炉建屋の設置に適する場所であるかの検討(耐震性、岩盤支持の問題)
高潮、津波対策としては土木的には下記の2種の方法が挙げられている[51]

防潮堤防波堤を構築する
しかし、防潮堤、防波堤の構築は当時信頼度の点から好ましい手段とは見なされていなかった。そのため、整地面レベルの決定に際しては、「過去の記録あるいは何らかの科学的推論にもとづく最大の高潮や津波時の海水面レベルの上昇の想定値に多少の余裕を与えて」さらに岩盤支持の問題も考慮して最低の許容レベルが決定された、としている[51]

なお、津波の検討に使用された参考文献として小林健三郎は下記の文献を挙げている[52]

1966年5月20日の講演にて田中直治郎は、30mの台地を23m掘削して海抜7m程度とする旨を述べていたが、同時に「GEから見積書と仕様書が出ると、配置、レベルについてはさらに多少の変更を要するので、請負業者とは打合わす必要があると思います」としていた[65]。その後高波、津波に対して「十分安全な高さ」を考慮し上述のように海抜10mで決定、施工された[35]。また、地下1階まであるマークIのような標準プラントでは、東芝レビューによれば整地面レベルから10m程度掘り下げたところに岩盤があるのが望ましいとされた。結局、1号機の原子炉建屋の底面は整地面より14mほど掘り下げられた高さに位置することになった[54]。敷地地盤高がこのような形で決定したのは、定量的な比較検討を経たからで、小林健三郎は1号機の運転開始後、次のように振り返っている。

発電所敷地地盤高は、波浪および津波などに対する防災的な配慮とともに、原子炉および発電機建屋出入口の高さ、敷地造成費、基礎費、復水器冷却水の揚水電力料などがもっとも合理的で、しかも経済的となるように決定する必要がある。
当地点付近の高極潮位は小名浜港においてO.P.+3.122m(チリ地震津波)であるので、潮位差を加えても防災面からの敷地地盤高はO.P.+4.000mで十分である。
一方、地質条件より原子炉建屋の基礎地盤高をO.P.-4.0m(復水器天端高O.P.+9.8m)と決めたため、原子炉建屋の出入口との関係からみると、発電所敷地地盤高は1号機ではO.P.+10.0mが好ましく、2号機以降分は基礎地盤高を調整すれば、この地盤高に原子炉建屋の出入口を揃えることができる。
次に170m×460mの陸上部の敷地造成に必要な掘削費、O.P.-4mの基礎地盤までの建物基礎掘削費および勾配1/20、幅員9.5mの進入道路の掘削費の合計額が最経済的となる敷地地盤高を求めた結果は図-8[67]の通りとなり、この結果からもO.P.+10m付近が最低値となることが明らかとなった。
以上の結果により、陸上部の敷地地盤高をO.P.+10mと決定し、埋立部のポンプ室付近地盤高はO.P.+4.0mとした。 ? 「福島原子力発電所の計画に関する一考察」『土木施工』1971年7月pp.121-122

港湾施設の計画[編集]


それでも写真のように、小規模な港と防波堤が建設されたのは次の理由からである。復水器冷却用水の取水法を検討した際、海底パイプライン、海底隧道桟橋、港湾の各方式を比較検討し、最も経済的であり、且つ建設資材や運開後の燃料搬入にも使用できる港湾方式を採用した[68](1-6号機完成時点では毎分245立方メートルとなった[69])。取入口の海水輸送用の鉄管は1号機の例で直径2.4mもあった[70]。なお、港湾方式による取水は在来の東京湾岸の火力発電プラントにおいても多用されている方式でもあった[39]。また、重量物搬入の面が重視された背景には軽水炉特有の事情も影響していると言う。つまり、当時の一般火力に比較しても蒸気条件が低いため、圧力容器、タービン、発電機のいずれもが大型とならざるを得なかった。圧力容器を例に取ると1号機で重量440t、直径約5m、高さ約19mであり、厚肉のため現場溶接は不可能であった[39]。このため、後述のように防波堤を港湾周囲にめぐらす工事が実施された。

なお、物揚場バース長は170mである[40]。港内波高と荷役の安全から物揚場敷地地盤高はO.P.+5mである[57]

『月刊エネルギー』に掲載された今井孝三の見学記事では、圧力容器の他、復水器、タービン、発電機、変圧器等の重量物の陸揚げに使用され、1968年10月以降1971年2月末まで、3年弱で96隻の着岸があったという[72]

1970年代、外洋に面した立地で発電所を建設していた国は日本の他には少なく、本発電所には発展途上国だったインドや内陸に発電所を建設する傾向が大きかったヨーロッパの技術者が見学に来ていたという[69]

防波堤[編集]


海象調査や近隣地点のデータ検討の結果、設計波高として、6.5m(1/3有義波、周期16秒、波向東北東)と決定した。防波堤の平面形状については電力中央研究所に依頼して問題点の把握に努めたという[41]。このため、中央研究所で平面縮尺100分の1、二次元実験36分の1の模型実験(防波堤の波浪遮蔽効果実験等)が実施された。防波堤設計に当たっては日本港湾コンサルタントの助言も得ている[59]

防波堤の設計に当たっては、取水口開渠内の最大波高が50cm以下になるように計画し、南北2本の防波堤で波浪を防ぎ、この防波堤を超えた波については取水口周辺に設けた東防波堤によって防ぐものとした[74]。建設する港については3000トン級の船舶が入港可能なように、港口幅100m、港内泊地の水深6mを確保している。防波堤外には波消用にテトラポッドを投入した[75]

南防波堤天端高:O.P.5m
『東電社報』1969年5月号によれば付帯施設とは言え新規に港湾をひとつ建設する工事であり、築堤のために海中に埋められるコンクリート構造物だけで約58万トンにもなった。原石山からの輸送には大型ダンプ20台が毎日7往復したという[70]。ただし、砕石運搬道路沿いの桜を伐採する問題もあり、港湾工事を総指揮していた小林健三郎は対応に苦心したという[61]。南北防波堤共、先端部に使用するケーソンは小名浜港で建造し、合計で10個が埋設された。1個の重量は700〜800tになる[77]

『電気情報』1969年10月号での座談会では「太平洋の荒波に面したこのような当地点に、僅か三〜四年の短期間に、総延長二四〇〇〜二五〇〇メートルの防波堤をつくるということは、東京電力は勿論のことわが国においても初めての工事です」と新規性が指摘されている[78]

また、発電所開所後福島民報が女性社会科教室を主催し、サービスホールを訪問した際に当時の館長菊池健の説明を引く形で「津波にしても延長二千八百メートルの防波堤がたいていの波浪をシャットアウトしてしまう」などと報じている[79]

地震動の検討[編集]


柴田碧によれば具体的作業の面から地震動の検討について見ると、福島や敦賀発電所の時代は、個別のプラントごとに社内委員会の形で議論されたという。福島については、河角マップ[80]を元に、1936年に宮城県沖で発生した金華山沖地震時の金華山神社の記録調査などが実施され、金華山近くの内側の地震発生機構を討議したという[65]

豊田正敏の機械学会での発表によれば、1号機の建設当時検討した歴史地震の頻度などについては下記のような結果だったという[66]

強震(当時の震度5)[83]以上:150年に1度
烈震(当時の震度6)以上:400年に1度
[4]前ページ
(3.8.敷地造成)
[6]次ページ
(4.建設の経過)
~目次に戻る
出典:Wikipedia
2018/07/24 04:30
ソ人気記事ランキング
2018/08/20 更新
 1位石塚運昇
 2位ノモンハン事件
 3位SMAP解散騒動
 4位君の膵臓をたべたい
 5位日本航空123便墜落事故
▲上に戻る
[9]Wikipediaトップ
[0]gooトップ
免責事項
(C)NTT Resonant