‰t‘Ì
¥l‹C‹LŽ–×ݷݸÞ
øê7.—ÍŠw
7.1.’e«”g
ˆê”ʂɉt‘̂ƌő̂̊î–{“Iˆá‚¢‚Æ‚µ‚ĤŒÅ‘Ì‚ª‚¹‚ñ’f‰ž—͂ɑ΂µ‚Ä’e«“I’ïR‚ðŽ¦‚·‚̂ɑ΂µ‚Ĥ‰t‘Ì‚Í‚»‚¤‚Å‚Í‚È‚¢‚Æ‚¢‚¤“_‚ª‹“‚°‚ç‚ê‚é¡‚µ‚½‚ª‚Á‚ĉt‘Ì‚Ì•ªŽq‰^“®‚͏c”giÌ«É݁j‚É•ª‰ð‚Å‚«¤‰¡”g‚Í”ñí‚É’˜—§‚Á‚½Œ‹»Ž¿‚̌ő̂ł̂݌»‚ê‚é¡‚·‚È‚í‚¿¤’Pƒ‰t‘Ì‚Í‚¹‚ñ’f‰ž—Í‚Æ‚¢‚¤Œ`‚ʼnÁ‚¦‚ç‚ꂽ—Í‚É‘Ï‚¦‚邱‚Æ‚ª‚Å‚«‚¸¤—ÍŠw“I‚É‚»‚ê‚ɍ~•š‚µ‹Ž‹“I‚É‚Í‘Y«•ÏŒ`i”S«—¬j‚ð‹N‚±‚·¡‚³‚ç‚ÉŒ¾‚¦‚ΤŒÅ‘Ì‚Í‚¹‚ñ’f‰ž—͂ɑ΂µ‚ċǏŠ“I‚É•ÏŒ`‚·‚邾‚¯‚Å‘S‘Ì‚ÌŒ`‚ª•Û‚½‚ê‚é‚̂ɑ΂µ‚Ĥ‰t‘Ì‚ÍÅËÞ´-½Ä°¸½•û’öŽ®‚Å•\‚³‚ê‚é”S«—¬‚Æ‚È‚Á‚Ä‘å‚«‚­•ÏŒ`¥—¬“®‚·‚é¡‚±‚Ì“_‚ªŒÅ‘̂Ɖt‘Ì‚Ì—ÍŠw“I‚ȈႢ‚Æ‚³‚ê‚Ä‚¢‚é[14]¡
‚µ‚©‚µ˜A‘±«‚ɂ‚¢‚Ä‚ÌŠÏ‘ª‚É‚æ‚ê‚Τ‰¡”g‚Í•K‚¸‚µ‚àŒÅ‘Ì‚Ì‚Ý‚Å“`‚í‚é‚킯‚Å‚Í‚È‚­¤‰t‘Ì‚Å‚à“`‚í‚é‚ÆŒ‹˜_•t‚¯‚ç‚ê‚顒ʏí‚̉t‘Ì‚Å‚ÌŽÀŒ±‚Å‚±‚ÌŒ‹˜_‚ªŠm”F‚Å‚«‚È‚¢‚̂ͤŒ»‘ã‚̉¹‹¿Šw‚âŒõŠw‚Ì‹Z–@i’´‰¹”g‚âÚ°»Þ°j‚Å“¾‚ç‚ê‚éU“®ŽüŠú‚ɑ΂µ‚ĉt‘Ì’†‚ł̉¡”g‚ÌŒ¸Š‚ª‹É‚ß‚Ä‘f‘‚­‹N‚«‚邽‚ß‚Å‚ ‚é¡‚»‚̂悤‚ÈðŒ‰º‚łͤ‰t‘̂ł̉¡”g‚Í‹}Œƒ‚ÉŒ¸Š‚·‚é¡
‚»‚ê‚ç‚ÌŒ‹˜_‚ÌŒŸØ‚ɂͤ’PŒ´Žq•ªŽq‚̉t‘Ì‚â¶Þ×½‚Ì•ªŽq“®—ÍŠw–@‚̺ÝËß­°À¼Ð­Ú°¼®Ý‚ªŽg‚í‚ꤒZ‚¢”g’·‚ł͉t‘Ì‚ª‰¡”g‚ð“`”d‚Å‚«‚邱‚Æ‚ªŠm”F‚³‚ꂽ¡‚±‚Ì”S’e«‚̐U‚é•‘‚¢‚Í”g”‚ª‘‰Á‚·‚é‚ɂ‚ê‚ĉt‘̂̍„«‚ªd—v‚È—v‘f‚É‚È‚é‚Æ‚¢‚¤Ž–ŽÀ‚ÆŒ‹‚т‚¢‚Ä‚¢‚é[15][16][17][18][19][20][21]¡
‚Žü”g‚̉¡”g‚Əc”g‚ÌŒ¸Š‹@\‚ͤ”S«‚̉t‘Ì‚âd‡‘Ì‚â¶Þ×½‚ðl—¶‚µ‚Ä‚¢‚½[22]¡‚»‚̌㤍L”͈͂̎žŠÔ“I¥‹óŠÔ“I½¹°Ù‚ÅŠÏ‘ª‚³‚ê‚é\‘¢ŠÉ˜a½Í߸ÄقðŽg‚Á‚Ä”S«‰t‘̶̂Þ×½“]ˆÚ‚ð‰ðŽß‚·‚éV‚½‚Ȑ¬‰Ê‚ª¶‚܂ꂽ¡“®“IŒõŽU—–@i‚Ü‚½‚ÍŒõŽq‘ŠŠÖ–@j‚ðŽg‚Á‚½ŽÀŒ±‚łͤ10|11•b‚Æ‚¢‚¤’Z‚¢ŽžŠÔ‚É‚¨‚¯‚镪Žq‚Ì“®‚«‚ðŒ¤‹†‚Å‚«‚é¡‚±‚ê‚ͤŽü”g”‚͈̔͂ð 109 Hz ‚©‚»‚êˆÈã‚ÉŠg’£‚µ‚½‚Ì‚Æ“™‰¿‚Å‚ ‚é[23][24]¡
‚µ‚½‚ª‚Á‚Ĥ‰¡‰¹‹¿Ì«É݁i‰¡”gj‚ƍd‰»‚ ‚é‚¢‚ͶÞ×½‰»‚ÌŠJŽn‚É‚Í–§Ú‚ÈŠÖŒW‚ª‚ ‚邱‚Æ‚ª‚í‚©‚額d‰»‚ªŠÏ‘ª‚³‚ê‚é”g’·‚Ì‘‘å‚ðl—¶‚·‚é‚Ƥ‚»‚ÌŒ»Û‚ÌŽü”g”‚ւ̈ˑ¶«‚ª–¾‚ç‚©‚É‚È‚é¡
‰t‘Ì‚Ì”M‰^“®‚ð’e«”g‚̏d‚ˍ‡‚킹‚Å•\‚·‚Æ‚¢‚¤•û–@‚Í Brillouin ‚ªÅ‰‚É“±“ü‚µ‚½¡‚µ‚½‚ª‚Á‚ċÏWŒn‚ÌŒ´Žq‚Ì“®‚«‚Í’èí”g‚ÌÌ°Ø´‹‰”‚Å•\‚³‚꤂»‚ê‚ç‚Í•¨—“I‚É‚Í—lX‚È•ûŒü‚â”g’·‚ÌŒ´Žq‚̐U“®i–§“x‚Ì‚ä‚炬j‚̏c”g‚≡”g‚̏d‚ˍ‡‚킹‚ƉðŽß‚Å‚«‚顉¹”g‚Ì“`”d‚Æ‚¢‚¤ˆÓ–¡‚łͤc”g‚·‚È‚í‚¿‘e–§”g‚Ì‘¬“x‚Í•¨Ž¿‚̑̐ϒe«ŒW”‚ɐ§ŒÀ‚³‚ê‚é¡–§“xƒÏ‚Ƒ̐ϒe«ŒW” K ‚Ì”ä‚Ì•½•ûª¤‚·‚È‚í‚¿ã(K /ƒÏ)‚ͤcÌ«É݂̓`”d‘¬“x‚Æ“™‚µ‚¢¡‰¡”g‚̏ꍇ–§“x‚͈ê’è‚Ȃ̂Ť“`”d‘¬“x‚͍„«—¦‚É‚æ‚Á‚ЧŒÀ‚³‚ê‚é[25]¡
–§“x‚ƍ„«—¦ G ‚Ì”ä‚Ì•½•ûª‚ͤ‰¡Ì«É݂̑¬“x‚É“™‚µ‚¢¡]‚Á‚Ĥ”g“®‚Ì‘¬“x‚ÍŽŸ‚̂悤‚É‚È‚éF
‚±‚±‚Ńςͤ—±Žq–§“x‚Ü‚½‚Í”ä‘̐ς̋t”‚Å‚ ‚é¡
[4]‘OÍß°¼Þ
(6.\‘¢)
[6]ŽŸÍß°¼Þ
(7.2.•ªŽqU“®)

14. Born, M., The Stability of Crystal Lattices, Proc. Camb. Phil. Soc., Vol. 36, p.160, (1940) doi=10.1017/S0305004100017138; Thermodynamics of Crystals and Melting, J. Chem. Phys., Vol. 7, p. 591 (1939) doi=10.1063/1.1750497; A General Kinetic Theory of Liquids, University Press (1949)
15. C.A. Angell, J.H.R. Clarke, I.V. Woodcock (1981). gInteraction Potentials and Glass Formation: A Survey of Computer Experimentsh. Adv. Chem. Phys. 48: 397. doi:10.1002/9780470142684.ch5. 
16. C.A. Angell (1981). gThe Glass Transition: Comparison of Computer Simulation and Laboratory Studiesh. Trans. N.Y. Acad. Sci. 371: 136. doi:10.1111/j.1749-6632.1981.tb55657.x. 
17. D. Frenkel, J.P. McTague (1980). gComputer Simulations of Freezing and Supercooled Liquidsh. Ann. Rev. Phys. Chem. 31: 491. doi:10.1146/annurev.pc.31.100180.002423. 
18. Levesque, D. et al., Computer "Experiments" on Classical Fluids, Phys. Rev. A, Vol. 2, p. 2514 (1970); Phys. Rev. A, Vol. 7, p. 1690 (1973); Phys. Rev. B, Vol. 20, p. 1077 (1979)
19. G. Jacucci, I.R McDonald (1980). gShear waves in liquid metalsh. Molec. Phys. 39: 515. doi:10.1080/00268978000100411. 
20. M.H. Cohen and G.S. Grest (1980). gLiquid-glass transition: Dependence of the glass transition on heating and cooling ratesh. Phys. Rev. B 21: 4113. doi:10.1103/PhysRevB.21.4113. 
21. G.S. Grest, S.R. Nagel, A. Rahman (1980). gLongitudinal and Transverse Excitations in a Glassh. Phys. Rev. Lett. 49: 1271. doi:10.1103/PhysRevLett.49.1271. 
22. Mason, W.P., et al., Mechanical Properties of Long Chain Molecule Liquids at Ultrasonic Frequencies, Phys. Rev., Vol. 73, p. 1074 (1948); Measurement of Shear Elasticity and Viscosity of Liquids by Means of Ultrasonic Shear Waves, J. Acoust. Soc. Amer., Vol. 21, p. 58 (1949)
23. Litovitz, T.A., et al., Ultrasonic Spectroscopy in Liquids, J. Acoust. Soc. Amer., Vol. 431, p. 681 (1959); Ultrasonic Relaxation and Its Relation to Structure in Viscous Liquids, Vol. 26, p. 566 (1954); Mean Free Path and Ultrasonic Vibrational Relaxation in Liquids, J. Acoust. Soc. Amer., Vol. 32, p. 928 (1960); On the Relation of the Intensity of Scattered Light to the Viscoelastic Properties of Liquids and Glasses, Vol. 41, p. 1601 (1967); Montrose, C.J., et al., Brillouin Scattering and Relaxation in Liquids, Vol. 43, p. 117 (1968); Lamacchia, B.T., Brillouin Scattering in Viscoelastic Liquids, Dissertation Abstracts International, Vol. 27-09, p. 3218 (1967)
24. I.L. Fabelinskii (1957). gMolecular Scattering of Light in Liquidsh. Uspekhi Fizicheskikh Nauk 63: 355. 
25. L. Brillouin (1922). gDiffusion de la lumi?re et des rayons X par un corps transparent homog?ne; influence de l'agitation thermiqueh. Annales de Physique 17: 88. 

ù~–ÚŽŸ‚É–ß‚é
o“T:Wikipedia
2018/05/18 22:00
ù¿l‹C‹LŽ–×ݷݸÞ
2019/11/22 XV
 1ˆÊ¨“ú–{
 2ˆÊ¨Œ³ç—tÛ¯ÃÏذݽޓŠŽè‹­“ŽElŽ–Œ
 3ˆÊ¨¬ì”Ž
 4ˆÊ¨‘òK´Ø¶
 5ˆÊª–Ø“à‚Ý‚Ç‚è
£ã‚É–ß‚é
[9]WikipediaįÌß
[0]gooįÌß
¡–Ɛӎ–€
(C)NTT Resonant