ˆÜ“x
¥l‹C‹LŽ–×ݷݸÞ
øê2.ˆÜ“x‚ÌŽí—Þ
2.5.‹’·ˆÜ“x (rectifying latitude)
Ô“¹‚©‚ç’n—ˆÜ“x‚Ü‚Å‚ÌŽqŒßüŒÊ’·‚ÅŠ·ŽZ‚³‚ê‚éˆÜ“x‚Ť‹’·ˆÜ“x ‚ͤ’n—ˆÜ“x ‚ƈȉº‚̂悤‚ÈŠÖŒW‚É‚ ‚éF

μ ( φ ) = π 2 m ( φ ) m ( π / 2 ) {\displaystyle \mu (\varphi )={\frac {\pi }{2}}{\frac {m(\varphi )}{m(\pi /2)}}} ‚½‚¾‚µ¤ ‚͐ԓ¹‚©‚ç’n—ˆÜ“x ‚Ü‚Å‚ÌŽqŒßüŒÊ’·‚ð•\‚µ¤

m ( φ ) = 0 φ M θ d θ {\displaystyle m(\varphi )=\int _{0}^{\varphi }M_{\theta }{\rm {d}}\theta } ‚Å—^‚¦‚ç‚ê‚é¡

‚ð ‚ɂ‚¢‚Ä‚æ‚è‚ ‚ç‚í‚ɏ‘‚«‰º‚¹‚ΤŽŸ‚̂悤‚É•\‚·‚±‚Æ‚ª‚Å‚«‚é[4]¡

μ ( φ ) = φ + j = 0 { k = 1 j ( n 2 k + n ) } 2 l = 1 2 j sin 2 l φ l m = 1 l ( n 2 j + 2 ( 1 ) m m / 2 n ) ( 1 ) m j = 0 { k = 1 j ( n 2 k + n ) } 2 {\displaystyle \mu (\varphi )=\varphi \,+\,{\frac {\displaystyle \sum _{j=0}^{\infty }\left\{\prod _{k=1}^{j}\left({\frac {n}{2k}}+n\right)\right\}^{2}\sum _{l=1}^{2j}{\frac {\sin 2l\varphi }{l}}\prod _{m=1}^{l}\left({\frac {-n}{2j+2\cdot (-1)^{m}\lfloor m/2\rfloor }}-n\right)^{(-1)^{m}}}{\displaystyle \sum _{j=0}^{\infty }\left\{\prod _{k=1}^{j}\left({\frac {n}{2k}}+n\right)\right\}^{2}}}}
[4]‘OÍß°¼Þ
(2.4.³ÏˆÜ“x (authalic latitude))
[6]ŽŸÍß°¼Þ
(2.6.“™’·ˆÜ“x (isometric latitude))
ù~–ÚŽŸ‚É–ß‚é
o“T:Wikipedia
2019/03/27 07:30
ù¿l‹C‹LŽ–×ݷݸÞ
2019/08/25 XV
 1ˆÊ¨“ú–{
 2ˆÊª•¶‹ž‹æ—c—ŽElŽ–Œ
 3ˆÊª”Ñ“c—SŠî
 4ˆÊ«–¼ŒÃ‰®¬6ŽóŒ±ŽElŽ–Œ
 5ˆÊ«ŽR–{”ü
£ã‚É–ß‚é
[9]WikipediaįÌß
[0]gooįÌß
¡–Ɛӎ–€
(C)NTT Resonant