ˆά“x
₯l‹C‹LŽ–Χέ·έΈή
ψκ2.ˆά“x‚ΜŽν—ή
2.5.‹’·ˆά“x (rectifying latitude)
Τ“Ή‚©‚η’n—ˆά“x‚ά‚Ε‚ΜŽqŒίόŒΚ’·‚ΕŠ·ŽZ‚³‚κ‚ιˆά“x‚Ε€‹’·ˆά“x ‚Ν€’n—ˆά“x ‚ΖˆΘ‰Ί‚Μ‚ζ‚€‚ΘŠΦŒW‚Ι‚ ‚ιF

μ ( φ ) = π 2 m ( φ ) m ( π / 2 ) {\displaystyle \mu (\varphi )={\frac {\pi }{2}}{\frac {m(\varphi )}{m(\pi /2)}}} ‚½‚Ύ‚΅€ ‚͐ԓΉ‚©‚η’n—ˆά“x ‚ά‚Ε‚ΜŽqŒίόŒΚ’·‚π•\‚΅€

m ( φ ) = 0 φ M θ d θ {\displaystyle m(\varphi )=\int _{0}^{\varphi }M_{\theta }{\rm {d}}\theta } ‚Ε—^‚¦‚η‚κ‚ι‘

‚π ‚Ι‚Β‚’‚Δ‚ζ‚θ‚ ‚η‚ν‚ɏ‘‚«‰Ί‚Ή‚Ξ€ŽŸ‚Μ‚ζ‚€‚Ι•\‚·‚±‚Ζ‚ͺ‚Ε‚«‚ι[4]

μ ( φ ) = φ + j = 0 { k = 1 j ( n 2 k + n ) } 2 l = 1 2 j sin 2 l φ l m = 1 l ( n 2 j + 2 ( 1 ) m m / 2 n ) ( 1 ) m j = 0 { k = 1 j ( n 2 k + n ) } 2 {\displaystyle \mu (\varphi )=\varphi \,+\,{\frac {\displaystyle \sum _{j=0}^{\infty }\left\{\prod _{k=1}^{j}\left({\frac {n}{2k}}+n\right)\right\}^{2}\sum _{l=1}^{2j}{\frac {\sin 2l\varphi }{l}}\prod _{m=1}^{l}\left({\frac {-n}{2j+2\cdot (-1)^{m}\lfloor m/2\rfloor }}-n\right)^{(-1)^{m}}}{\displaystyle \sum _{j=0}^{\infty }\left\{\prod _{k=1}^{j}\left({\frac {n}{2k}}+n\right)\right\}^{2}}}}
[4]‘OΝί°Όή
(2.4.³Οˆά“x (authalic latitude))
[6]ŽŸΝί°Όή
(2.6.“™’·ˆά“x (isometric latitude))
ω~–ΪŽŸ‚Ι–ί‚ι
o“T:Wikipedia
2019/03/27 07:30
ωΏl‹C‹LŽ–Χέ·έΈή
2020/01/21 XV
 1ˆΚ¨“ϊ–{
 2ˆΚ¨­”N—U‰ϋΞΩΟΨέ’Π‚―Ž–Œ
 3ˆΚ¨VŠƒ­—ŠΔ‹ΦŽ–Œ
 4ˆΚͺ΄”όμ”~”V
 5ˆΚͺκi—Ω‚ͺ‚­‚ι
£γ‚Ι–ί‚ι
[9]WikipediaΔ―Μί
[0]gooΔ―Μί
‘–ΖΣŽ–€
(C)NTT Resonant